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ABSTRACT

We introduce an e�cient and accurate alternative to full hydrodynamic

simulations, Hydro-PM (HPM), for the study of the low column density

Lyman-alpha forest (NHI
<
�

10
14
cm

�2
). It consists of a Particle-Mesh (PM)

solver, modi�ed to compute, in addition to the gravitational potential, an ef-

fective potential due to the gas pressure. Such an e�ective potential can be

computed from the density �eld because of a tight correlation between density

and pressure in the low density limit (� <
�

10), which can be calculated for

any photo-reionization history by a method outlined in Hui & Gnedin (1997).

Such a correlation exists, in part, because of minimal shock-heating in the low

density limit. We compare carefully the density and velocity �elds as well as

absorption spectra, computed using HPM versus hydrodynamic simulations,

and �nd good agreement. We show that HPM is capable of reproducing mea-

surable quantities, such as the column density distribution, computed from

full hydrodynamic simulations, to a precision comparable to that of observa-

tions. We discuss how, by virtue of its speed and accuracy, HPM can enable

us to use the Lyman-alpha forest as a cosmological probe.

We also discuss in detail the smoothing of the gas (or baryon) uctuation

relative to that of the dark matter on small scales due to �nite gas pressure: (1)

It is shown the conventional wisdom that the linear gas uctuation is smoothed

on the Jeans scale is incorrect for general reionization (or reheating) history;

the correct linear �ltering scale is in general smaller than the Jeans scale after

reheating, but larger prior to it. (2) It is demonstrated further that in the

mildly nonlinear regime, a PM solver, combined with suitable pre-�ltering of

the initial conditions, can be used to model the low density IGM. But such an

approximation is shown to be less accurate than HPM, unless a non-uniform

pre-�ltering scheme is implemented.

Key words: cosmology: theory | intergalactic medium| quasars: absorp-

tion lines { methods: numerical { hydrodynamics
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INTRODUCTION

The low density intergalactic medium, �lling the enormous space between galaxies and their

aggregations, o�ers cosmologists a unique and powerful probe of the high redshift universe

(z � 2 � 5), still inaccessible for large galaxy surveys. The intergalactic medium (hereafter

IGM) manifests itself observationally in the numerous weak absorption lines along a line

of sight to a distant quasar, the Lyman-alpha forest. Up to date, an enormous treasury of

observational data on the Lyman-alpha forest at a wide range of redshifts has been collected

(see, for example, Hu et al. 1995, Lu et al. 1996, Cristiani et al. 1996, Kirkman & Tytler 1997,

Kim et al. 1997 and D'Odorico et al. 1997 for most recent observational advances). Several

models were proposed to explain the Lyman-alpha forest (Bahcall & Salpeter 1965; Arons

1972; Black 1981; Ostriker & Ikeuchi 1983; Ikeuchi & Ostriker 1986; Rees 1986; Ikeuchi 1986;

Rees 1988; Bond, Szalay, & Silk 1988; McGill 1990; Bi, B�orner & Chu 1992). However, it

was only after several groups (Cen et al. 1994; Zhang, Anninos, & Norman 1995; Hernquist

et al. 1996; Miralda-Escud�e et al. 1996; Wadsley & Bond 1996; Zhang et al. 1997) performed

cosmological hydrodynamic simulations when it became apparent that at least an appreciable

fraction of the Lyman-alpha forest consists of smooth uctuations in the IGM, which arise

naturally under gravitational instability, rather than discrete absorbers, as has been believed

before.

Abundance of observational data and the existence of a compelling theoretical framework

(i.e. hierarchical clustering) allows one to make detailed comparisons between observations

and predictions of a given cosmological model. Moreover, one might even attempt to use the

observational data in a maximum-likehood type analysis to infer cosmological parameters,

either in a model-independent way, or at least within a class of models. A recent example

towards this direction is the use of the observed mean Lyman-alpha optical depth to put

limits on the baryon content of the universe (Miralda-Escud�e et al. 1996; Rauch, et al.1996;

Bi & Davidsen 1997; Weinberg et al. 1997). One might contemplate going a step further to

use other properties of the Lyman-alpha forest as a probe of equally interesting cosmological

parameters such as the normalization and slope of the power spectrum (see, for example,

Hui, Gnedin & Zhang 1997), the massive neutrino density, the epoch of reionization and so

on.

However, while hydrodynamic simulations give us insights into the physical properties

of the IGM as well as de�nite predictions for a given cosmological model (provided, numer-

ical resolution and physical modelling are adequate), computational expense makes them

impractical to use in a maximum-likehood type of analysis in which a large range of models

are considered.

It is therefore important to ask whether a more e�cient, and at the same time su�ciently

accurate, approximate method can be developed in place of full hydrodynamic simulations.

Up to date, two di�erent semi-analytical approximations have been used: the lognormal
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approximation (Bi, B�orner & Chu 1992; Bi & Davidsen 1997; Gnedin & Hui 1996) and the

(truncated) Zel'dovich approximation (Doroshkevich, & Shandarin 1977; McGill 1990; Hui,

Gnedin, & Zhang 1997). While both approximations are very e�cient, they might not be

su�ciently accurate. For example, while the one-point density distribution function is close

to lognormal for mildly nonlinear uctuations, the lognormal approximation itself fails to

reproduce the density �eld accurately (Coles, Melott, & Shandarin 1993). The truncated

Zel'dovich approximation is somewhat more accurate, and can be used for about a decade

in the IGM density, from about ��=3 to 3��, where �� is the average density of the universe.

However, a main drawback of the truncated Zel'dovich approximation is the necessity of the

smoothing of the initial density �eld to minimize the amount of orbit-crossing by the time of

interest. This inevitably introduces arti�cial smoothing of small scale structure, which could

bias one's predictions, depending on the quantities one is interested in. While the Zel'dovich

approximation can be successfully applied to study the column density distribution of the

Lyman-alpha forest (Hui, Gnedin, & Zhang 1997), it remains to be seen whether it can

reproduce the detailed results of a hydrodynamic simulation with su�cient accuracy.

In this paper we present a new approximate method, which is based on a standard

Particle-Mesh (PM) solver, modi�ed to account for the pressure forces acting on a uid el-

ement. While the PM solver is signi�cantly slower than, say, the Zel'dovich approximation,

it is still much faster than a full hydrodynamic simulation. In order to develop a method

that will be accurate to within 15% (the reason for this number will be clear by x4), we

�rst in x2 describe two hydrodynamic simulations that we have run to be used as templates

against which approximate methods are compared. Then, we start with linear theory to

develop some intuition �rst. In x3 we discuss the e�ect of the gas pressure on the evolution

of linear perturbations. The conventional wisdom that linear baryon (or gas) perturbations

are smoothed on the Jeans scale is shown to be incorrect in general, and it is demonstrated

that the smoothing scale depends on the reionization history of the universe. Armed with

an understanding of the behavior of linear uctuations, in x4 we compare full hydrodynamic

simulations with an approximate method based on combining a PM solver with the appro-

priate smoothing of initial conditions (with the smoothing scale motivated by the linear

analysis), as a way of taking into account the physical e�ect of gas pressure (this is di�erent

from initial smoothing in the case of the truncated Zel'dovich approximation as a way of

correcting for orbit-crossing). We then conclude that this method is not su�ciently accurate

and proceed to develop our new approximation, which we call Hydro-PM (hereafter HPM)

in x5.

The idea of HPM is very simple: one modi�es a regular PM solver to compute, in addition

to the usual gravitational potential, an e�ective potential due to the presence of gas pressure.

This is possible because there exists a tight correlation between temperature and density (or

equivalently, between pressure and density) in the low density limit, which can be computed
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Table 1. Cosmological Models

Model 
0 
b h 
� �8 cell size

LCDM 0.35 0.055 0.7 0.65 0.79 6:6h�1 kpc

SCDM 1.0 0.05 0.5 0 0.70 15:6h�1 kpc

quite accurately for any given reionization history (Hui & Gnedin 1997). A given density �eld

then predicts an e�ective pressure �eld as well as a de�nite gravitational potential �eld. The

fundamental rationale is that for the Lyman-alpha forest of su�ciently low column density

(NHI <� 1014 cm�2), shock-heating is not important (or, equivalently, the density uctuations

are only mildly nonlinear, � <� 10), which is the one piece of physics that HPM does not

incorporate. As we will show, this does not compromise our accuracy signi�cantly while

buying us a great increase in e�ciency over full hydrodynamic simulations.

It is appropriate that we mention here two wonderful pieces of related work. Petitjean,

M�ucket & Kates (1995) and M�ucket et al. (1996) investigated properties of the Lyman-alpha

forest using PM simulations, suitably modi�ed to follow the thermodynamics of baryons.

Their approach di�er from our HPM method in at least two aspects: the baryons are ap-

proximated as following trajectories of dark matter prior to shell-crossing (we include the

dynamical e�ects of pressure on baryons), and shock-heating is modelled in their method

which enables them to study higher column density systems. The reader is referred to the

above papers for details.

Finally, we conclude in x6 with a brief discussion. A word on our notation: the symbol

� is used to denote mass density as usual, as well as the mass density in units of the cosmic

mean (i.e. � and 1 + � used interchangeably). Which meaning is intended should be clear

from the context.

HYDRODYNAMIC SIMULATIONS

We have performed two cosmological hydrodynamic simulations against which we will mea-

sure the performance of our approximate methods. We used the SLH-P3M code as described

by Gnedin (1995), Gnedin (1996), Gnedin & Bertschinger (1996) and Gnedin & Ostriker

(1997). Table 1 contains cosmological parameters of the two models. We have chosen two

di�erent models which enable us to test our approximate methods under di�erent conditions.

For both models we have used 643 baryonic mesh and the softening parameter was set to

1=3, which gives us a dynamical range of 192. Since we are mainly concerned with modelling

the low density IGM, � <� 10, we do not need to set the softening parameter to a very small

value. Our choice of the softening parameter, however, does enable full resolution of regions

with � = 10 or lower. The LCDM model is identical to the model used in our Equation of

c 0000 RAS, MNRAS 000, 000{000



6

Figure 1. Evolution of the ionizing intensity J21 for the LCDM model (solid line) and the SCDM model (dashed line) as a
function of redshift.

State paper (Hui & Gnedin 1997), except for the larger value of the softening parameter,

while the SCDM model is close to the model studied by Zhang et al. (1997).

The thermal history for each of our simulations is determined by the evolution of the

photo-ionizing background. Figure 1 shows the evolution of the ionizing intensity J21 as a

function of redshift for both hydrodynamic simulations. The redshift evolution of J21 and

the spectrum of radiation for the LCDM model was adopted from the simulation described

in (Hui & Gnedin 1997). For the SCDM model, we have adopted the following form of the

redshift evolution of J21:

J21(z) =
1

2

"
1 + tanh

 
100

7� z

8(1 + z)

!#
;

where J21 is de�ned in exactly the same way as JHI in Hui & Gnedin (1997), and we adopt

the same spectral shape as in Hui & Gnedin (1997), equation (7). This form of the redshift

evolution of J21 is close to the sudden reionization models discussed in detail in Hui & Gnedin

(1997). For low z, z � 7, the ionizing intensity reaches its asymptotic value, J21 = 1:0, and

it drops quickly before the redshift of reionization, zrei = 7. The factor of 100 inside the tanh

insures that reionization occurs smoothly in a redshift interval �z=z � 0:01. This transition
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period is introduced to avoid numerical instabilities possible when J21 increases abruptly at

the redshift of reionization, as in models of sudden reionization.

Both simulations have been continued until z = 3. It is worth pointing out that the sim-

ulation box in both cases was rather small, 1h�1Mpc for the LCDM model, and 422h�1 kpc

for the SCDM model. At the �nal redshift, uctuations at the box size are already nonlinear,

and simulation boxes are not representative patches of the universe. This fact should have

minimal e�ect on the present work: our main goal is to develop an understanding of the

relationship between the dark matter and the baryons on small scales, to help us �nd an ap-

proximation that takes into account both gravity and gas pressure in an appropriate manner

(on large scales, things are simple: dark matter and baryons simply trace each other). The

key is then to resolve structure on the relevant small (mass) scales (as will be explained in

the next section), rather than having a representative sample of the universe on large scales.

LINEAR EVOLUTION OF COSMOLOGICAL PERTURBATIONS

The linear evolution of perturbations in the dark matter - baryon uid is governed by two

second order di�erential equations:

d2�X

dt2
+ 2H

d�X

dt
= 4�G��(fX�X + fb�b);

d2�b

dt2
+ 2H

d�b

dt
= 4�G��(fX�X + fb�b)�

c2S
a2
k2�b; (3.1)

where �X(t; k) and �b(t; k) are Fourier components of density uctuations in the dark matter

and baryons (we equate baryons with the cosmic gas in this paper) respectively, which have

respective mass fractions fX and fB, H(t) is the Hubble constant, a(t) is the cosmological

scale factor, ��(t) is the average mass density of the universe, cS(t) is the sound speed in the

cosmic gas (where the sound speed is simply de�ned by c2S � dP=d�, assuming an equation

of state that relates the P and �), k is the comoving wavenumber and t is the proper time.

In the limit where the dark matter is gravitationally dominant, fb = 0 in equation (3.1),

the growth of �X is described by the familiar factor D+(t) (Peebles 1980), which coincides

with a(t) if the matter density of the universe is critical.

The right hand side of the equation for �b contains two terms: the gravitational force and

the pressure force. On large scales, in the limit k ! 0, the pressure force can be neglected, and

the baryon uctuation obeys the same equation as the dark matter uctuation. Assuming

that �b = �X initially, we have

�b(t; k! 0) = �X(t; k! 0) / D+(t):

On small scales, k ! 1, the pressure force is dominant, and one would expect that the

baryon uctuation is suppressed compared to the dark matter uctuation. A characteristic

c 0000 RAS, MNRAS 000, 000{000



8

scale, where the two forces are equal, is called the Jeans scale. We denote the wavenumber

corresponding to the Jeans scale as kJ ,

kJ =
a

cS

q
4�G��: (3.2)

The Jeans scale is in general a function of time, but for the special case when the gas

temperature T evolves with time as T / 1=a, the Jeans scale is constant in time. In this case,

and assuming fb = 0 (i.e. the baryons are gravitationally subdominant), so that �X / D+,

equation (3.1) can be solved analytically:

�b(t; k) =
�X(t; k)

1 + k2=k2J
: (3.3)

Thus, at small scales, k ! 1, the baryon uctuation is suppressed relative to the dark

matter uctuation by a factor of k2J=k
2. Note that this assumes e�ectively a very special

boundary condition: T / 1=a at all times.

Let us now consider a more realistic case. At su�ciently high redshifts, before the Comp-

ton heating of the baryon gas by the CMB becomes ine�cient, the evolution of the baryon

temperature is well described by the T / 1=a law. At redshifts of about 100 (depending on

the baryon density of the universe), Compton scattering becomes ine�cient and the tem-

perature of the baryon gas drops adiabatically, T / 1=a2. By low redshifts, but before the

universe reionizes, the gas temperature can be treated as e�ectively zero (or in other words,

the Jeans mass associated with the CMB temperature is too small to be relevant for the

modelling of the Lyman-alpha forest).

The gas temperature rises dramatically after the universe reionizes, and its subsequent

evolution is obviously our object of interest. As we will show, equations (3.2) and (3.3) no

longer provide a correct description of the smoothing and time evolution of the gas.

In order to consider a realistic case, we extract the evolution of the sound speed from

our SCDM simulation and solve equation (3.1) numerically with the obtained form of cs(t).

Figure 2 shows the linear baryon uctuation, normalized by the linear dark matter uc-

tuation, at z = 3. Three di�erent cases are shown: fb = 0:05 as in the simulation (the solid

line), fb = 0 in equation (3.1), baryons being treated as gravitationally subdominant and

therefore their gravitational e�ect is negligible (the dashed line), and fb = 1, all matter

being baryonic (the dotted line). The two cases with fb = 0:05 and fb = 0 can barely be

distinguished from each other in the �gure. The case where all the matter is treated as

baryonic also gives a very similar result. This point will be examined further in x6.

Let us focus on the open circles for the time being. They represent the linear baryon

uctuation as given by equation (3.3), where the �ltering scale is the Jeans scale as de�ned

in equation (3.2) for z = 3. One can see that in this realistic case (where T does not evolve

as 1=a at all times), �ltering of the baryon uctuation occurs at a smaller scale than the

Jeans scale, contrary to conventional wisdom. In addition, oscillations occur at small scales,
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Figure 2. Comparisons of di�erent �ltering. The exact linear baryon uctuation for the SCDM model at z = 3 as calculated
from equation (3.1) are shown for fb = 0:05 (solid line), fb = 0 (dashed line, almost overlappingwith the solid line), and fb = 1
(dotted line). Points with di�erent symbols represent di�erent �ltering of the linear darkmatter uctuation (to approximate the
linear baryon uctuation): 1=(1+ k2=k2

J
) �ltering (open circles), exp(�k2=k2

F
) �ltering (�lled circles), 1=(1+ k2=k2

F
) �ltering

(�lled triangles), and a hybrid �ltering which gives the best �t to the envelope of the baryon uctuation (eq. [4.20]; stars).

and the amplitude of these oscillations decay at a rate slower that 1=k2, contrary to equation

(3.3).

It is possible to understand this analytically. Let us consider the case where the baryons

are gravitationally subdominant, fb = 0. Then the dark matter uctuation simply grows

c 0000 RAS, MNRAS 000, 000{000
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like D+(t) (ignoring the decaying mode). Let us consider expanding the ratio of the baryon

uctuation to dark matter uctuation �b(t; k)=�X(t; k) in powers of k2. Retaining only the

�rst two dominant terms in the small k limit, and recalling that �b(t; k = 0) = �X(t; k = 0),

we have:

�b(t; k)

�X(t; k)
= 1 �

A(t)

D+(t)
k2; (3.4)

where A(t) is an unknown coe�cient to be determined. Inserting equation (3.4) into (3.1)

and ignoring terms of order k4 or higher, we obtain the following equation for A(t):

d2A

dt2
+ 2H

dA

dt
=
c2S
a2
D+(t): (3.5)

This equation can be easily solved by:

A(t) =
Z t

0
dt0c2S(t

0)D+(t
0)
Z t

t0

dt00

a2(t00)
: (3.6)

where the initial conditions A(t = 0) = dA=dt(t = 0) = 0 are assumed (i.e. no di�erence

between the baryon and dark matter uctuations at early times). Note that A is positive,

which means the baryon uctuation is always suppressed, compared to the dark matter, in

the low k regime. We now introduce the �ltering scale, with the corresponding wavenumber

denoted as kF , by the following expression:

A(t) �
D+(t)

k2F (t)
;

so that equation (3.4) can now be rewritten as

�b(t; k)

�X(t; k)
= 1 �

k2

k2F
: (3.7)

The following expression for the �ltering scale kF can be obtained:

1

k2F (t)
=

1

D+(t)

Z t

0
dt0a2(t0)

�D+(t
0) + 2H(t0) _D+(t

0)

k2J (t
0)Z t

t0

dt00

a2(t00)
; (3.8)

where we have replaced the sound speed by its expression in terms of the Jeans scale at the

same moment (eq. [3.2]), and dot denotes di�erentiation with respect to the time t.

An important conclusion follows from equation (3.8). Let us rewrite it in the following

form, using the median value theorem:

1

k2F (t)
=

1

k2J (t�)

"
1

D+(t)

Z t

0
dt0a2(t0)

�
�D+(t

0) + 2H(t0) _D+(t
0)
� Z t

t0

dt00

a2(t00)

#
;

where t� is between 0 and t. The expression in square brackets integrates to 1, and we obtain:
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kF (t) = kJ (t�); (3.9)

where t� � t. In other words, the �ltering scale at a given time is equal to the Jeans scale

at some earlier time. In particular, if the Jeans scale 1=kJ is an increasing function of time,

which is typically the case for su�ciently low redshifts after reionization, the �ltering scale

1=kF is always smaller than the Jeans scale. The reverse would be true prior to reionization,

as we will see in a moment.

The above notion of the �ltering scale is, strictly speaking, only applicable in the small

k limit, because it is derived based on an expansion in k2 (equation [3.4]). To see how

well this �ltering scale provides a description of the linear baryon uctuation in the high

k regime, we show in Fig. 2 with �lled circles the �ltering in the form exp(�k2=k2F ) (i.e.

�b = �X exp[�k2=k2F ]), where kF is computed from equation (3.8) using the evolution of the

sound speed (or in other words the Jeans scale) as extracted from the SCDM hydrodynamic

simulation.

One can see despite the fact that kF is derived in the small k limit, the exponential

�ltering with kF gives an excellent �t to the baryon uctuation even for high k, until oscil-

lations take over. We also show with �lled triangles the �ltering of the form 1=(1 + k2=k2F )

(i.e. �b = �X=[1+ k
2=k2F ]) for the same kF , which gives a worse �t for the high k cut-o� and,

as in the case of exp(�k2=k2F ) �ltering, does not match the envelope of oscillations on small

scales.

Encouraged by the excellent performance of the gaussian �ltering on scale of 1=kF in

reproducing the exact linear solution, we now consider a few special cases, where kF can be

calculated analytically. Let us restrict ourselves to an 
0 = 1 universe, where D+(t) = a(t).

For simplicity, we will assume that the mean molecular weight of the cosmic gas does not

change, in which case the sound speed is directly proportional to the square root of the

gas temperature. First, we consider the case where the gas temperature T is zero before

reionization (which occurs at a = arei), and remains constant thereafter:

T =

(
0; a < arei, and

T0; otherwise.
(3.10)

Computing the integral (3.8), we obtain for a > arei:

1

k2F
=

1

k2J

3

10

"
1 + 4

�
arei

a

�5=2
� 5

�
arei

a

�2#
: (3.11)

In particular, for a� arei,

kF =

s
10

3
kJ :

Another instructive example is when the gas temperature decays as 1=a after reionization,

T =

(
0; a < arei, and

T0arei=a; otherwise.
(3.12)
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In this case the �ltering scale for a > arei is given by

1

k2F
=

1

k2J

"
1 + 2

�
arei

a

�3=2
� 3

arei

a

#
: (3.13)

In the limit a� arei we recover the standard result kF = kJ , but the asymptote is reached

only slowly, and even at z = 3 and for zrei = 7, we obtain kF = 2:2kJ . We emphasize the

departure of the correct �ltering scale from the usual Jeans scale is a result of the fact that

T above is not assumed to evolve as 1=a at all times. The time evolution of T considered

above is partly motivated by reionization models in which the originally cool cosmic gas was

heated up to a high temperature by radiation emitted by sources (stars, quasars, etc) that

turned on at some high redshift.

Typically, the gas temperature decays as an intermediate power between a0 and a�1 after

reionization (Hui & Gnedin 1997). We, therefore, conclude that in a realistic case one should

expect that at z � 3 the �ltering scale of the cosmic gas is about a factor of 1:5�2:5 smaller

than the Jeans scale, unless the universe reionized at a very high redshift, zrei � 10.

Another interesting example is the evolution of the baryon perturbations before reion-

ization. After recombination at z � 1200, the cosmic gas temperature is still coupled to the

CBR temperature by Compton heating, and therefore evolves as T / 1=a. At a later time

adec = 0:01(
bh
2=0:0125)2=5, Compton heating becomes ine�cient, and the gas temperature

decreases adiabatically, T / 1=a2. Since the Jeans scale decreases with time for an adia-

batically cooling gas, the �ltering scale for the cosmic gas is actually larger than the Jeans

scale. More precisely, a good approximation to the evolution of the cosmic gas temperature

is given by the following expression:

T =

(
2:73K=a; a < adec, and

2:73Kadec=a
2 otherwise.

(3.14)

In this case the �ltering scale for a > adec is given by

1

k2F
=

1

k2J

"
3 ln(a=adec)� 3 + 4

�
adec

a

�1=2#
: (3.15)

For example, for 
bh
2 = 0:0125, kF = 0:45kJ at z = 10, and in term of masses, the

characteristic mass scale on which the gas distribution is smoothed, MF / 1=k3F , is about

11 times larger than the Jeans scale,MJ / 1=k3J . This result has important implications for

understanding the formation of the �rst bound objects in the universe.

Next, we turn our attention to the oscillations in the high k regime, a behavior we can

understand analytically for the time evolution speci�ed in equation (3.12). We can solve

equation (3.1) exactly in this case, assuming once again the case of an 
0 = 1 universe with

fb = 0 (i.e. baryons being gravitationally subdominant):

�b(t; k)

�X(t; k)
=

1

1 + k2=k2J

 
1 +

k2

k2J

"
n�

n� � n+

�
a

arei

�n+
�
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n+

n� � n+

�
a

arei

�n�#!
(3.16)

for a > arei, where

n� = �
5

4
�

3

4

s
1

9
�

8

3

k2

k2J
;

and where �X grows as a. Note that since T / 1=a at a > arei, the Jeans scale kJ is constant

in time. In the limit a� arei and for k su�ciently small, equation (3.16) reduces to equation

(3.3).

Let us now consider a �xed �nal a, and take the large k limit. Then both n+ and n�

become complex (but �b is still real), and �b as a function of k oscillates. However, one can

see that in the high k limit, the amplitude of these oscillations is independent of k. We,

therefore, conclude that in general �b=�X has no power-law asymptote in the high k limit.

It is sometimes claimed in the literature that �b=�X always approaches an asymptote of k�2

in the high k limit. That statement is only correct if T evolves as a �xed power law in a at

all times (see Bi et al. 1992 for derivation). The simple case above provides an example of

departure from this property.

Finally, we emphasize that the two hydrodynamic simulations described in the previous

section have su�ciently small cell sizes so that the corresponding correct �ltering scales

(1=kF ) are resolved by about 5 mesh cells. This ensures that we can meaningfully compare

di�erent smoothing prescriptions, as explained in the following section.

FILTERING INITIAL CONDITIONS FOR A PM SIMULATION

The linear analysis in the previous section shows that the two mass components, the dark

matter and the cosmic gas, evolve di�erently on small scales: the dark matter is a�ected

by gas pressure only via gravitational interaction with the gas, while the gas evolution is

directly inuenced by the thermal pressure on su�ciently small scales. In order to com-

pute this complex interaction in every detail, a two-component hydrodynamic simulation is

needed. But often the precision achieved by the full hydrodynamic simulation is not required.

For instance, current observations of the Lyman-alpha forest typically give about 10-15%

accuracy for the column density distribution. We will attempt to develop an approximation,

that is signi�cantly faster than a hydrodynamic simulation, but at the same time gives us

results with similar accuracy.

As a step toward this goal, we will concentrate in this paper on single-component ap-

proximations, i.e. approximations where the evolution of the cosmic gas is computed using

only one set of resolution elements (in our case particles) instead of following both the

dark matter and the gas separately. This approach is certainly more economical than a full

hydrodynamic simulation, but the question is: can we make it accurate enough?
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It is certainly possible to emulate a gas-dynamic solver using a simple dark matter solver

in the linear regime. Let �
(0)
X (t; k) and �

(0)
b (t; k) be the linear solutions to equation (3.1) for

a speci�c cosmological model. Suppose we are interested in the baryon uctuation at some

�nal moment t = tf (which is early enough so that the uctuation remains linear). Let us

model the evolution of the baryon perturbation with a dark-matter-only solver (e.g. PM),

which, in the linear regime, is equivalent to solving the �rst of equations (3.1) and assuming

fb = 0. If we choose the following initial condition for the dark-matter-only solver at an

early time t = ti:

�X(t = ti; k) =
D+(ti)

D+(tf)
�
(0)
b (t = tf ; k); (4.17)

it is easy to see that we will reproduce the baryon uctuation in the linear regime at t = tf .

Since, as we have shown in the last section, �
(0)
b (t = tf ; k) can be modelled by �X(t = tf ; k)

multiplied by some suitable �lter, the above initial condition is equivalent to smoothing the

initial �X with the same �lter.

One might then hope to model the dynamical evolution of the gas by a PM simulation,

with the initial conditions appropriately smoothed. In other words, one may try to model

the gas evolution under the assumption that the gas is inuenced by gravity alone, hoping

that the initial �ltering procedure is su�cient to model the e�ect of pressure.

There is no guarantee that this simple-minded method would work. After all, our idea

of a simple �ltering scale is derived from linear analysis, while for our applications, we are

interested in regions of space with overdensity below, but reaching up to about 10. In fact, we

will show in this section that this method works to a certain extent, but is not good enough,

i.e. it fails to achieve an accuracy of 10�15% in a point-by-point comparison of density and

velocity �elds against full hydrodynamic simulations. Observationally, interesting quantities

such as the column density distribution are typically measured with an accuracy of about

10�15%. As we will show in the next section, this level of accuracy requires similar accuracies

in the density and velocity �elds themselves.

Before we embark upon a quantitative comparison of the PM + �ltering method versus

hydrodynamic simulation, we have to address one technical point.

A collisionless (alias \N-body") numerical simulation, such as PM, uses particles to follow

the evolution of the system. For our applications, it is eventually necessary to compute

the gas density and velocity as a function of spatial positions. How does one convert a

distribution of particles into, say, the density �eld? There exist several techniques, but in

this paper we will adopt the simplest method of assigning the density onto a uniform mesh

using particle weights. Speci�cally, we will use the Triangular-Shape-Clouds (TSC) scheme

to assign the particle density onto a mesh. This method, however, su�ers from numerical

noise. For example, in a su�ciently underdense region a particle might be so remote from

its neighbors that the TSC assignment would leave empty regions (zero density) between
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the particle and some of its neighbors. This generates unphysical structure on small scales.

The easiest way to suppress this numerically generated structure is to smooth the resultant

density distribution with, for example, a gaussian �lter. However, since we are trying to

achieve an order of 10-15% accuracy in reproducing the gas distribution, we ought to ensure

that we reduce the numerical assignment noise to within a couple of percent. In other words,

what is the degree of smoothing we must apply to the TSC-assigned density distribution to

reduce the noise to, say, 2%?

In order to answer this question, we have performed two PM simulations: a low resolu-

tion one with 643 mesh, and a high resolution one with 1283 mesh with the same number of

particles (643) and identical initial conditions. The rms overdensity at the �nal moment is

chosen to be 3 to allow for development of su�cient nonlinearities. Those two simulations

therefore should produce the same �nal density distribution except that the high resolu-

tion simulation has twice higher spatial resolution. The two density distributions are then

smoothed with a gaussian �lter with some chosen smoothing scale. By comparing the two

simulations smoothed with varying smoothing scale, we �nd that the smoothing scale should

be at least 3 cells to reduce the numerical assignment noise to within 2%. This conclusion

has also been con�rmed by Bertschinger (1997).

Therefore, from now on, we will present results of collisionless N-body experiments with

the �nal density and velocity �elds assigned to the uniform mesh by the TSC scheme and

then smoothed with a gaussian �lter of three mesh cells. This procedure is admittedly quite

wasteful, since it implies that we lose a factor of 1.5 to 3 in spatial resolution. The advantage

is that it is simple to implement. We defer developing a more e�cient density assignment

scheme to future work.

Before we move on to testing various forms of PM + initial �ltering, it is interesting

to address the question of whether we need any initial smoothing at all, i.e. how much the

dark matter and the gas densities di�er in a hydrodynamic simulation. Figure 3 shows the

scatter plot of the dark matter versus gas density for the SCDM hydrodynamic simulation

at z = 3. One can see that the di�erence is signi�cant, with the dark matter density being

a factor of 3 lower than the gas density in the lowest density regions. Hence, a pure PM

simulation, with no modi�cations to mimic the dynamical e�ects of pressure, would fail to

reproduce the gas distribution of the low density IGM with su�cient accuracy.

We now turn to testing the method of combining PM with the �ltering of the initial

conditions, as stated at the beginning of this section. A hydrodynamic simulation is run

for the SCDM model as described in Table 1. All PM simulations are performed with 643

particles on a 1923 mesh for the same model. The choice of the mesh size of 1923 is a

natural one given that the hydrodynamic simulation has 643 moving mesh and the softening

parameter is set to 1=3 (we have in fact tested di�erent mesh sizes, from 643 to 2563, and

found that the 1923 mesh gives, as could be expected, much better agreement with the
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Figure 3. A scatter plot of the dark matter density vs the gas density (in units of respective average densities) in the SCDM
hydrodynamic simulation at z = 3. Because of �nite gas pressure, the gas distribution does not reach densities as low as those
of the dark matter.

hydrodynamic simulation). The pre-�ltered initial conditions of the PM simulations are

chosen to be exactly the same as those in the hydrodynamic simulation.

Figure 4 summarizes our �ndings. Before we proceed further, a few words are in order

on our way of presenting comparisons between two three-dimensional �elds (say, density

or velocity �elds). The easiest way for such a comparison is a scatter plot, similar to one

presented in Fig. 3. However, while a scatter plot is su�ciently illustrative, it fails to give
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explicit quantitative information. We, therefore, use the following method of comparing two

�elds hereafter in this paper. For de�niteness, suppose we are interested in the �eld Q(x)

(which could be density, velocity or the spectrum; in the case of spectrum, x would be

replace by � the wavelength). We denote by QEXACT the �eld taken from one of the two

hydrodynamic simulations, and by QAPPROX the �eld taken from the approximate computa-

tion under consideration. Then we identify all spatial points in the relevant hydrodynamic

simulation which have the value of QEXACT within �0:05dex from some chosen value Q0,

and compute the following average:

[QAPPROX �QEXACT]AVG �

hQAPPROX(x)�QEXACT(x)ijQEXACT(x)=Q0 (4.18)

and the rms deviation:

[QAPPROX �QEXACT]RMS �rD
(QAPPROX(x)�QEXACT(x))

2
E���
QEXACT(x)=Q0

(4.19)

over the ensemble of QAPPROX's at the corresponding spatial points in the approximate

calculation. The above quantities would then be plotted as a function of Q0. In the case

of density, we use Q = ln� where � is measured in units of the cosmic average; for the

spectrum, we use Q = F=(1 � FEXACT) where F is the transmission; for velocity v, we use

Q = v=vm where vm is de�ned in Figure 6. In all cases, the average and rms deviations

de�ned above provide quantitative measures of the fractional error in the corresponding

approximate method, compared against the hydrodynamic simulation.

Given the two deviations, the average one, and the rms one, which one is more impor-

tant? The average deviation can be interpreted as a systematic error: it measures how much

the \approximate" density �eld systematically deviates from the \exact" density �eld. Ob-

viously, it is desirable to reduce this error as much as possible. The rms deviation is more

like a random error, and while it is also desired to be as small as possible, a larger value

of the random error can perhaps be tolerated. In comparing simulations with observations,

usually a statistical quantity is computed by averaging the results of simulations in some

fashion. This averaging will reduce the random (rms) error, but may not reduce the system-

atic (average) error. Therefore, as we are proceeding with our tests, we will try to reduce

the average error to about 5%, and then try to reduce the rms error as much as possible

while keeping the average error small. We again emphasize that we will concentrate on the

density range � <� 10, and will ignore all possible error induced in the high density regions.

Our ultimate object of interest is of course a comparison of the gas distributions between

two methods, but let us take a look at the dark matter distributions �rst. There are a few

interesting observations.

The agreement between the dark matter density from the hydrodynamic simulation and
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the density from a PM simulation with identical initial conditions (no pre-�ltering for this

PM simulation; shown with solid lines in Fig. 4) is better than 4 percent on average, and

about 5% rms, getting to 10% at overdensities about 10. At higher overdensities the agree-

ment gets worse. What is the reason the two dark matter distributions do not agree, in spite

of the fact that the formal resolutions of two simulations are matched? This disagreement

is caused by the di�erence in Green functions used to compute the gravity force in two

simulations. While the hydrodynamic simulation has the Green function corresponding to

the Plummer softening, the PM simulations have the Green function corresponding to our

speci�c choice of density assignment on the PM mesh. This di�erence in Green functions,

which is purely methodological, induces error of up to 10% rms even for � � 10 (in particu-

lar, stronger deviation at higher density is due to the fact that the Plummer Green function

is slightly softer than our PM Green function).

Finally, we turn our attention to a comparison of gas density distributions. We �rst

consider the simplest variant of the PM + �ltering method: we smooth the initial conditions

with the exp(�k2=k2F ) �lter (i.e. �(k) ! �(k) exp[�k2=k2F ]), where kF is given by equation

(3.8) with kJ related to the sound speed through (3.2), and the evolution of the sound

speed simply taken from the hydrodynamic simulation. Recall that this particular choice of

�ltering gives an excellent �t to the exact linear baryon uctuation on large scales (�lled

circles in in Fig. 2). One might hope that the same form of �ltering + PM gives an adequate

approximation even in the mildly nonlinear regime.

This case is shown by the dotted lines in Fig. 4. Note that while the average error is

small for 0:5 <� � <� 10, it gets signi�cantly worse at � � 0:1, and the rms error is as high

as 20% almost everywhere. What causes the strong di�erences in low density regions? More

speci�cally, in such regions, why does the hydrodynamic simulation predict gas densities

substantially lower than the PM + smoothing approximation? One possible explanation is

that the choice of initial �ltering is incorrect: the exp(�k2=k2F ) �ltering underestimates the

amount of power at high k. From the linear analysis shown in Fig. 2, it can be seen that

this �lter fails to take into account extra power due to oscillations in the large k limit.

We therefore try two other variants of the PM + �ltering method. One is using the

1=(1 + k2=k2F ) �lter (shown as �lled triangles in the linear analysis of Fig. 2). Its results,

as compared against the hydrodynamic simulation, are shown with the long-dashed lines in

Fig. 4. This choice of �ltering gives a slower cut-o� at high k compared to the gaussian �lter.

The average agreement at low densities signi�cantly improves with this form of �ltering, at

the expense of, however, increased rms error and average error at higher densities.

Finally, the short-dashed lines in Fig. 4 show the results of the PM + �ltering method

with the following �lter function:

fb(t; k) =
1

2

"
e�k

2=k2F +
1

(1 + 4k2=k2F )
1=4

#
: (4.20)
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This choice of �ltering gives a very good �t to the envelope of oscillations at high k in

the linear uctuations (the star symbols in Fig. 2). One can see that the average error still

reaches 10% within the range � < 10, and the rms error is as high as 30% for intermediate

densities.

We have tried quite a few other forms of �ltering the initial conditions, each giving

e�ectively di�erent amounts of power at high k, but none of them reduces the average nor

the rms error substantially.

We believe the fundamental aw of the above PM + �ltering procedure is that a single

uniform smoothing scale is assumed for the whole density �eld. This is adequate in the linear

regime where spatial uctuations of the temperature can be ignored in computing the �lter-

ing scale (i.e. these uctuations contribute to terms of higher order than those in equation

[3.1]). But in the mildly nonlinear regime, one can no longer ignore such uctuations. In

fact, places with higher density tends to have higher temperature (Hui & Gnedin 1997),

and hence higher pressure and more smoothing. One then expects the lower density regions,

because of their lower thermal pressure, to be less smoothed compared to the higher density

regions (but con�ned to � <� 10). A uniform smoothing procedure would tend to overesti-

mate the density in the lowest density regions. Note that the PM part of our procedure does

e�ectively introduce non-uniform smoothing, but it does not do so in a way that mimics the

action of thermal pressure correctly.

We are not aware of a computationally e�cient way of performing the necessary variable

smoothing on a large mesh. Should such an algorithm be invented, the case for the PM +

initial-�ltering may be reconsidered, but at the moment we must admit that this simple

method fails to give us the desired accuracy in reproducing results of the full cosmological

hydrodynamic simulation, and we must search for something better.

HYDRO-PM APPROXIMATION FOR THE COSMIC GAS

DISTRIBUTION

We have repeatedly emphasized in this paper that dynamically, the main di�erence between

dark matter and gas is that the latter is subject to thermal pressure on top of gravity. A

hydrodynamic code is designed to compute this thermal pressure and in general, there is

no other alternative. However, in case of the low density IGM, a very useful fact can be

exploited to our advantage: there exists a tight correlation (to better than 10%) between

gas density and temperature (and hence pressure as well) in the low density regime (Hui

& Gnedin 1997), where shock-heating is not important. The density-temperature relation is

well-described by a power-law equation of state:

T = T0�
�1; (5.21)
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where T0 is a constant of the order of 10
4K, and  is typically about 1:4� 1:6. Both T0 and

 evolve with time in a way that depends on reionization history, but we have developed an

e�cient method to predict them with high accuracy (Hui & Gnedin 1997).

The equation of state given above immediately provides us with the thermal pressure

once the gas density is known. The need in the hydrodynamic solver suddenly evaporates,

and the gas evolution can now be followed with a PM-type solver, provided it is modi�ed

appropriately to include the e�ect of thermal pressure. We show below how this can be done.

Let us consider the equation of motion for a cosmic gas element:

dv

dt
+Hv = �r��

1

�
rP; (5.22)

where v is the gas peculiar velocity, � is the gravitational potential, and P is the thermal

pressure. If the gas is highly ionized (so that the mean molecular weight is roughly constant,

which is true for the Lyman-alpha forest), and the temperature is a function of density only,

so that P = P (�), equation (5.22) can be reduced to the following equation:

dv

dt
+Hv = �r (5.23)

where

 = �+H; (5.24)

and H, called the speci�c enthalpy, is

H(�) =
P (�)

�
+
Z �

1

P (�0)

�0
d�0

�0
:

Equation (5.23) is identical to the equation of motion for the collisionless dark matter except

that the usual gravitational potential � is replaced by an e�ective potential  , which takes

into account both gravity and thermal pressure. Since the gravitational potential � has to be

computed from the density �eld in a regular PM simulation anyway, it adds only a modest

computational overhead to compute the enthalpy as well. It is extremely simple to modify

the regular PM routine to do so, and we will call this method the \Hydro-PM", or HPM.

In principle, one should then follow the motion of two sets of particles: the gas which

follows the equation of motion as in (5.23) and the dark matter which obeys the same

equation except that H = 0. In practice, to reduce the computational cost, we treat both

sets of particles as if they all follow the same equation of motion (equation [5.23], with

the full  including both gravity and pressure). This might seem quite unjusti�ed. But one

should bear in mind that on large scales, pressure is not dynamically important, and so

allowing pressure to also act on the dark matter particles makes practically no di�erence.

The same cannot be said for small scales: the arti�cially imposed pressure on dark matter

causes its distribution to be less clustered than it should be. It then becomes a question of

how sensitive the small scale pressure (which is dynamically more important than gravity
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on the same scales) on the baryons is to the detailed distribution of matter. The answer

seems to be: not very much, but we would come back to this point in the last section. For

now, the reader can take this single component HPM method as a plausible approximation,

the merits of which can only be weighed through detailed comparisons with hydrodynamic

simulations.

There is however an important technical point that we should discuss before going onto

tests of the HPMmethod. In a PM (or HPM) code, the density is assigned onto a mesh using

the TSC assignment scheme, as an intermediate step in the computation of the potential � (or

 ). As we pointed out at the beginning of the previous section, this induces numerical noise

on small scales (high k). This noise is not signi�cant for the gravity calculation, since it is

suppressed by k�2 power in the computation of the gravitational potential (�(k) / k�2�(k)).

The computation of the gas enthalpy, however, does not include such suppression, and the

numerical noise could be a problem. We therefore smooth the gas density according to the

prescription (over three mesh cells) developed at the beginning of the previous section (in

other words, we smooth the density �eld not only at the �nal moment, but also at the

intermediate steps of the force calculation). As a result, the pressure force is suppressed on

scales below about three cell sizes. It is then important that we resolve the scale 1=kF by

at least three cells (assuming the linear �ltering scale 1=kF gives the approximately correct

scale over which the density �eld is physically smoothed due to pressure). Otherwise, the

arti�cially reduced pressure at scales below three cells (because of our smoothing procedure

to reduce numerical noise) could lead to unphysical clustering on those scales.

In the limit when the �ltering scale is very small, and is below the cell size, the pressure

e�ect will be insigni�cant. One then may consider running just a pure PM simulation to

avoid the additional computational expense of about 25% because of the HPM modi�cation.

Let us proceed to the comparison of the HPM approximation with full hydrodynamic

simulations. We extract the equations of state as a function of redshift from our hydrody-

namic simulations and use them in the HPM simulation (the equations of state thus obtained

agree very well with those obtained using the method of Hui & Gnedin 1997; we use for HPM

the exact equations of state from the hydrodynamic simulation so that we can focus on the

error induced by the approximate dynamics in HPM). Figure 5 shows the average and rms

errors for the HPM vs full hydrodynamic simulation for the SCDM model at three di�erent

epochs and for the LCDM model at z = 3. We also show for each panel the corresponding

value of �F , which is the rms linear overdensity for the exp(�k2=k2F ) �lter:

�2F =
1

2�2

Z
1

0
dkk2PL(k; a) exp(�2k

2=kF (a)
2); (5.25)

where PL(k; a) is the linear power spectrum of a given model at a given value of the scale

factor a, 1=kF (a) is the �ltering scale at the same moment given by equation (3.8) (�F grows

slower that a because kF increases with time), and the factor of 2 in the exponential comes
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from relating � to the power spectrum by PL(k) / �2(k). The quantity �F therefore measures

the degree of nonlinearity of the gas distribution in the model. At z = 3, the SCDM model

is at a more nonlinear state than the LCDM model.

We also show in Fig. 5 two variants of the PM + �ltering methods from Fig. 4 for

comparison.

Note that HPM gives a signi�cantly better �t to the gas density distribution than the

PM + �ltering approach. For � <� 10, the average error generally stays within 5%, and the

rms error is only weakly dependent on density and is about 15% for high �F cases, and

falling to about 10% for low �F cases z. This is an important improvement over the PM +

�ltering method.

The gas density is not the only quantity that we would like to model. For the purpose of

generating absorption spectrum, it is important that we have su�ciently accurate velocities

as well. Figure 6 shows the comparison between one-dimensional gas velocities (velocities

projected along some �xed direction) in the HPM approximation and in the full hydrody-

namic simulation for our SCDM model (the solid line). The quantities on the y-axis in Figure

6 are supposed to reect the average and rms fractional errors in the velocity. The division

by �v for small jvEXACTj is implemented to avoid arbitrary blow up of the fractional error

when the velocity vanishes. The HPM approximation reproduces the gas velocity again to

within 15% rms error, but the average (systematic error) has now increased to more than

10% for velocities in excess of two sigma. This is an expected result, since high velocities

generally correspond to the high density regions, where the HPM approximation breaks

down (because shock-heating destroys the tight correlation between density and tempera-

ture/pressure). We also show for comparison results of the PM + �ltering approximations,

which cannot quite match the performance of HPM.

Since we plan to apply the HPM approximation to model the Lyman-alpha forest, we

must also verify that no signi�cant systematic error is introduced in the absorption spectra

themselves. We generate spectra along randomly oriented lines-of-sight through the hy-

drodynamic and the HPM simulations, and show three examples in Figures 7-9. The �rst

line-of-sight passes through an underdense region, the second passes through an overdense

region with overdensities � � 5 (the HPM method is expected to give accurate results in this

case), and the third passes through a peak with the overdensity � � 16. The HPM method

is expected to make a larger error in the third case, and this can be easily observed in the

corresponding bottom and middle panels, for density and velocity �elds. However, since the

transmission F is related to the optical depth � by F = e�� , and the optical depth is in

z The LCDM model shows slightly worse agreement at 5 <
�

� <
�

10. This is mostly due to the fact that we saved fewer

intermediate data while running this simulation, and as the result, the evolution of the equation of state from this simulation

is determined less accurately than the respective evolution from the SCDM simulation.
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turn approximately proportional to density to some power, a relatively large error in density

produces only a relatively small error in F .

To further quantify this, we show in Figure 10 comparisons between the decrements

(1 � F ) in the full hydrodynamic simulation and the HPM approximation computed from

300 random lines-of-sight. Since the neutral hydrogen fraction, and therefore the decrement

at a given wavelength, depends on the ionizing intensity J21, we show two di�erent cases:

J21 = 0:3 (the solid line) and J21 = 0:5 (the dashed line). Both values are too high for this

model to reproduce the observed column density distribution of the Lyman-alpha forest.

Lower values of the ionizing intensity will improve the agreement, since in this case a given

value of the decrement will correspond to a lower value of the gas density.

One might also wonder if the above comparisons underestimate the actual error, because

of the small simulation box size: the thermal broadening could drastically reduce discrep-

ancies, because the broadening width is a fair fraction of the box size in wavelength space.

To test this possibility, we recompute the spectrum for the same lines of sight through the

HPM and the full hydrodynamic simulations with J21 = 0:5, but with the gas temperature

reduced by a factor of 100. The corresponding comparison is plotted in Fig. 10 with the

dotted line. One can see that thermal broadening cannot explain the small errors in the

transmitted ux.

Figure 10 clearly shows the range of applicability of the HPM approximation. While

the average error stays within 10 %, the rms error is smaller than about 18 % throughout

the whole range of decrement. A remarkable feature of the HPM approximation is that it

actually describes regions of high decrements rather well. This is because even though the

HPM method fails to give the right density �eld with su�cient accuracy in high density

regions, its errors are e�ectively suppressed because the same regions give rise to saturated

absorption lines.

As we have emphasized before, in comparing simulations with observations, usually a sta-

tistical quantity is computed by averaging the results of simulations in some fashion, which

tends to reduce the random (rms) error (in other words, the point-by-point comparisons

above are a rather stringent test). We show one interesting example in Figure 11, namely

the column density distribution. We compute the column density distributions of the full

hydrodynamic simulation and the HPM approximation for our SCDM model at z = 3 using

the Density-Peak Ansatz (Gnedin & Hui 1996; Hui, Gnedin, & Zhang 1997). Both column

density distributions are plotted in Figure 11 with the solid and dotted lines respectively.

We also add a 10% error-bar to the column density distribution of the full hydrodynamic

simulation for illustrative purpose. Note that the two distributions agree to within about

13%, and the best-�t slopes di�er by less than 3%. We thus conclude that the HPM approx-

imation can be successfully used to model the Lyman-alpha forest when a 10-15% accuracy

is su�cient.
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DISCUSSION

We have demonstrated that the HPM method, based on a modi�ed PM routine to take

into account the dynamical e�ect of pressure as well as gravity, is an e�cient and accurate

alternative to hydrodynamic simulations in predicting the density and velocity �elds, as well

as absorption spectra.

The key that makes the HPM method possible is the fact that in the low density regime,

where shock-heating is not important, there exists a tight correlation between density and

temperature/pressure. The almost one-to-one relationship between these quantities enables

us to rewrite the equation of motion of the cosmic gas into a form that resembles its col-

lisionless counterpart. The net force on the gas is then simply the gradient of an e�ective

potential which can be computed from the density �eld alone.

The power of the method is enhanced by the fact that the density-temperature (or

density-pressure) relation, which has to be input into the HPM computation, can be calcu-

lated for any reionization history in a very e�cient manner without running hydrodynamic

simulations (Hui & Gnedin 1997).

We have also shown that a somewhat worse accuracy (than that of HPM) can be achieved

by a simple combination of a PM solver and smoothing of initial condition with an appro-

priate �lter.

Both the PM + �ltering method and HPM use a single component model to approximate

what is in reality a two-component system. The HPM method, in particular, treats the dark

matter as if it is subject to the same forces as the baryons, i.e. gravity as well as thermal

pressure. As we have explained before, this should not be a problem on large scales, because

pressure is dynamically subdominant on those scales anyway. On small scales, we are indeed

introducing an error by allowing pressure to act on the dark matter: the dark matter distri-

bution would become less clustered than it should be. One fact comes to our rescue, however:

the dominant force on the baryons on small scales is thermal pressure, not gravity, and since

pressure is determined by the baryon distribution alone, the actual distribution of baryons

on small scales should not be sensitive to errors in the dark matter distribution. The good

agreement between results of single-component HPM and full hydrodynamic simulations

lends support to this interpretation.

We can perhaps understand this in a simpler setting. In Figure 2, the solid line shows

the baryon uctuation in the limit fb = 0 (i.e. when no gravitational e�ect of the gas is

included), while the dotted line marks the opposite case, fb = 1, (when all the matter is

treated as baryonic, or in other words, the dark matter is subjected to pressure similar to

HPM). One might expect quite di�erent behavior between the two cases, but in fact they

are quite similar. Both on large scales and at very small scales (scales of oscillations), the

uctuations in both cases almost lie on top of each other. It is at the intermediate scales,

in fact close to kF , where the two depart from each other in a perceptible way. These scales
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however span a rather small range, which is probably the reason behind the success of the

single-component HPM.

Finally, a few words on the concept of maximum-likehood analysis of the Lyman-alpha

forest observations. While the HPM method is a factor of 10-100 faster than the full hy-

drodynamic simulations, and only 25% slower than a single component PM simulation, it

still requires considerable computational expense. One can imagine using a more e�cient,

but less accurate, approximation (say, truncated Zel'dovich approximation, see Hui et al.

1997) instead of HPM. This would introduce larger errors, but will allow us to sample a

large parameter space of cosmological models. When a smaller set of plausible models is

crudely identi�ed with this technique, one can switch to the HPM and further narrow the

allowed parameter space to a small region; �nally, if higher accuracy is desired, several full

hydrodynamic simulations can be run.
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Figure 4. The average (thin lines) and rms (bold lines) fractional errors for the density �elds in PM + �ltering simulations
as compared to the gas density �eld in a full hydrodynamic simulation for our SCDM model (see Table 1). The di�erent
approximations are: PM + exp(�k2=k2

F
) smoothing (dotted lines), PM + 1=(1 + k2=k2

F
) smoothing (long-dashed lines), and

PM + best-�t smoothing (eq. 4.20; short-dashed lines). Also shown is a comparison between the dark matter density from the
hydrodynamic simulation and the density from a PM simulation without any �ltering (solid lines). The di�erence in the Green
functions in the PM and hydrodynamic simulations induces an about 5% error.
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Figure 5. The average (thin solid lines) and rms (bold solid lines) fractional errors for the density �elds in HPM simulations
as compared to the gas density �elds in full hydrodynamic simulations for SCDM and LCDM models, and for di�erent stages of
evolution, as labeled for each panel. For comparison, two variants of the PM + �ltering method described in x3 are shown: PM
+ exp(�k2=k2

F
) smoothing (thin and bold dotted lines for average and rms deviations compared with hydro) and PM + best-�t

smoothing (thin and bold dashed lines for average and rms deviations compared with hydro) (see Fig. 4). The corresponding
linear rms overdensity �F (eq. [5.25]) is also shown for each panel.
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Figure 6. The average (thin lines) and rms (bold lines) fractional velocity errors for: HPM (solid lines), PM + exp(�k2=k2
F
)

initial smoothing (dotted lines) and PM + best-�t initial smoothing (eq. 4.20, dashed lines) as compared against the full
hydrodynamic simulation for the SCDM model at z = 3.
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Figure 7. A line-of-sight comparison between a full hydrodynamic simulation (solid line) and the HPM (dotted line) for the
SCDM model at z = 3. The bottompanel shows the density along the line-of-sight, the middle panel shows the peculiar velocity,
and the upper panel shows the ux as a function of wavelength. This line-of-sight goes through an underdense region.
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Figure 8. Another line-of-sight, which goes through an overdense region with � < 10.
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Figure 9. Another line-of-sight, which goes through a highly overdense region with � > 10. The HPM approximation is
expected to break down in this regime.
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Figure 10. The average (thin lines) and rms (bold lines) fractional decrement errors in an HPM simulation as compared to
the full hydrodynamic simulations for the SCDM model at z = 3. The solid line shows the HPM versus the hydrodynamic
simulation for J21 = 0:3, and the dashed line shows the same comparison for J21 = 0:5. Also shown is the case when the gas
temperature is decreased by a factor of 100 to reduce thermal smoothing (dotted line) when generating the spectra.
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Figure 11. Column density distributions of the full hydrodynamic simulation (solid line) and the HPM approximation (dotted
line) for the SCDM model at z = 3, computed using the Density-Peak Ansatz. A 10% error-bar was added for illustrative
purpose only.
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